Antimutagenic specificities of two plant glycosylases, oxoguanine glycosylase and formamidopyrimidine glycosylase, assayed in vivo.

نویسندگان

  • Terence M Murphy
  • Ying-Yi Guo
چکیده

The base-excision repair process protects genomes by removing and replacing altered bases in DNA. Two analogous glycosylases, oxoguanine glycosylase (OGG) and formamidopyrimidine glycosylase (FPG), can start the process by removing oxidized guanine, the most common modification that leads to misreading of DNA. Plants possess genes for both types of glycosylases. We have tested the hypothesis that the two enzymes in plants have diverged in their specificities by inserting the genes for each enzyme from Arabidopsis thaliana L. into Escherichia coli strains designed to indicate the frequencies of the six possible single-base changes. Both enzymes retain the ability to reduce the rate of GC-->TA transversion mutations. Both enzymes also reduce the frequency of two other base-change mutations, GC-->AT and AT-->TA. We do not find a divergence in the repair capabilities of the two enzymes, as measured in E. coli, although surprisingly FPG appears to increase the rate of mutations in one particular strain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo.

To protect cells from oxidative DNA damage and mutagenesis, organisms possess multiple glycosylases to recognize the damaged bases and to initiate the Base Excision Repair pathway. Three DNA glycosylases have been identified in mammals that are homologous to the Escherichia coli Fpg and Nei proteins, Neil1, Neil2, and Neil3. Neil1 and Neil2 in human and mouse have been well characterized while ...

متن کامل

Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA

Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix-hairpin-helix (HhH) superfamily and the Fpg/Nei family. The search mechanisms employed by these two ...

متن کامل

Rat 7,8-dihydro-8-oxoguanine DNA glycosylase: substrate specificity, kinetics and cleavagemechanism at an apurinic site.

Reactive oxygen species produce different lesions in DNA. Among them, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the major oxidative products implicated in mutagenesis. This lesion is removed from damaged DNA by base excision repair, and genes coding for 8-oxoG-DNA glycosylases have been isolated from bacteria, yeast and human cells. We have isolated and characterized the cDNA encoding the rat...

متن کامل

The genes encoding formamidopyrimidine and MutY DNA glycosylases in Escherichia coli are transcribed as part of complex operons.

Escherichia coli formamidopyrimidine (Fpg) DNA glycosylase and MutY DNA glycosylase are base excision repair proteins that work together to protect cells from the mutagenic effects of the commonly oxidized guanine product 7,8-dihydro-8-oxoguanine. The genes encoding these proteins, fpg and mutY, are both cotranscribed as part of complex operons. fpg is the terminal gene in an operon with the ge...

متن کامل

Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition

Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluoresc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 392 3  شماره 

صفحات  -

تاریخ انتشار 2010